Surname
Other Names

Centre Number

Candidate Number
0

PHYSICS－Component 2

Applications in Physics
FOUNDATION TIER
FRIDAY， 15 JUNE 2018 －MORNING
1 hour 15 minutes

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator，a ruler and a resource booklet．

	For Examiner＇s use only		
	Question	Maximum Mark	Mark Awarded
Section A	1.	5	
	2.	7	
	3.	7	
	4.	7	
	5.	10	
	6.	9	
Section B	7.	15	
	Total	60	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball－point pen．
Write your name，centre number and candidate number in the spaces at the top of this page．
Answer all questions．
Write your answers in the spaces provided in this booklet．

INFORMATION FOR CANDIDATES

This paper is in 2 sections， \mathbf{A} and \mathbf{B} ．
Section A： 45 marks．Answer all questions．You are advised to spend about 50 minutes on this section．
Section B： 15 marks．Read the article in the resource booklet carefully then answer all questions． You are advised to spend about 25 minutes on this section．
The number of marks is given in brackets at the end of each question or part－question．
The assessment of the quality of extended response（QER）will take place in question 5（b）．

EQUATION LIST

final velocity $=$ initial velocity + acceleration \times time	$v=u+a t$
distance $=1 / 2 \times$ (initial velocity + final velocity) \times time	$x=\frac{1}{2}(u+v) t$
$(\text { final velocity })^{2}=(\text { initial velocity })^{2}+2 \times$ acceleration \times distance	$v^{2}=u^{2}+2 a x$
change in thermal $=$ mass \timesspecific heat \timeschange in capacity temperature thermal energy for a change of state $=$ mass \times specific latent heat	$\Delta Q=m c \Delta \theta$
energy transferred in stretching $=1 / 2 \times$ spring constant $\times\left(\right.$ extension) ${ }^{2}$	$E=\frac{1}{2} k x^{2}$
for gases: pressure \times volume $=$ constant (for a given mass of gas at a constant temperature)	$p V=$ constant
current in potential difference across secondary coil \times secondary in coil	$V_{1} I_{1}=V_{2} I_{2}$

BLANK PAGE

SECTION A

Answer all questions.

1. The strength of a magnet can be determined by how many steel paper clips it picks up. A student predicts:
"A big magnet is stronger than a small magnet".
He decides to test his prediction. He uses two different size magnets in his experiment.
(a) Complete the diagram by drawing one line from each box on the left to the correct box on the right.

(b) He records his results in a table.

Size of magnet	Number of paper clips picked up
Big	70
Small	81

Explain whether his results agree with his original prediction.
\qquad
\qquad
(c) State one improvement to the experiment to increase confidence in the conclusion.
\qquad
\qquad
2. (a) In a laboratory, a radiation detector was placed in front of a radioactive source for 1 minute. The reading from the detector was recorded. The detector was reset back to zero and another reading recorded after 1 minute. The process was repeated another 4 times.

Detector reading (counts per minute)	74	76	72	75	74	73

(i) Put a tick (\checkmark) alongside the one correct reason below for the readings not being the same every minute.

Detector was probably not working properly.	
Radioactive decay is random.	
The source was faulty.	
The times were not carefully measured.	
The detector was not reset back to zero.	

(ii) Calculate the mean number of counts per minute (cpm).
(iii) The background count was stated as $\mathbf{2 3}$ counts per minute. Calculate the mean count rate of the source in cpm.
(b) A thick sheet of aluminium is now placed between the radioactive source and the radiation detector. The detector reading drops to 23 cpm . A student suggests that the radioactive source only emits beta radiation and no alpha radiation. Explain whether you agree. [3]
\qquad
\qquad
\qquad
\qquad
3. A factory that produces lamps has a quality control section. It carries out checks on some of the lamps to make sure their power is close to 25 W .
The apparatus they use is shown below. The energy meter is set to zero.

(a) The lamp transfers electrical energy into two other energy types.

Complete the energy transfer equation for the lamp.

(b) Name the meter that could be used to check that the output potential difference of the power supply is 12 V .
\qquad
(c) The lamp is switched on for 8.7 s and the energy meter reads 0.225 kJ at the end of this time.
(i) State how many joules of energy are used by the lamp.
(ii) Use the equation:

$$
\text { energy transferred }=\text { power } \times \text { time }
$$

to calculate the power of the lamp in watts (W).
(iii) The lamps should have a power of 25 W . Lamps whose power is more than 8% above or below this value are rejected. Explain whether the lamp tested should be rejected.
\qquad
\qquad
\qquad
4. (a) During a school trip to a slate quarry a student collects 5 small irregular shaped samples of slate.

- He labels them A, B, C, D and E.
- He places a measuring cylinder, containing water, on to a balance.
- He 'zeros' the reading by pressing the reset button.
- The reading is now 0.0 g .

State the volume of water in the measuring cylinder. \qquad cm^{3}
(b) The piece of slate labelled \mathbf{A} is added to the measuring cylinder. This is shown in the diagram below. The new volume and the mass from the display of the balance are recorded.

(i) Calculate the volume of slate sample \mathbf{A}.
(ii) Use the equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

to calculate the density of slate sample \mathbf{A}.
(c) Without removing slate sample A, slate sample B is added to the measuring cylinder. The new volume and mass are recorded. This is continued by adding pieces of slate \mathbf{C}, then \mathbf{D} and finally \mathbf{E}. The graph below shows the results.

(i) State which slate sample (A, B, C, D or E) has the largest mass.

Examiner
\qquad
(ii) State which two slate samples have the same volume.
\qquad
(d) Without calculation, state the density of slate sample \mathbf{D}.

Density = \qquad
5. The diagram shows a ray of light incident on a rectangular glass block.
(a) Complete the risk assessment.

Hazard	Risk	Control measure
Hot ray box and lamp	Can burn skin if touched	

(b) You are given the apparatus above and asked to carry out an experiment using the glass block. You are also provided with a protractor, plain A4 paper, a ruler and a pencil.

Describe how you could use the apparatus to investigate how the angle of incidence of the light ray is linked to its angle of refraction.
[6 QER]

\qquad
(c) Parallel rays of light are incident on three different glass lenses.

(i) Measure the focal length of the thin convex lens.

Focal length $=$ \qquad cm
(ii) Complete the ray diagram for the thick convex lens.
(iii) Complete the ray diagram for the thin concave lens.

6. A rigid vessel containing a fixed mass of gas is placed in a beaker. Boiling water is poured into the beaker as shown. The water is allowed to cool. As the water cools, its temperature and pressure are measured.

The results from the experiment are plotted on the grid below.

(a) (i) On the graph complete the label on the temperature axis.
(ii) Circle the anomalous point on the grid.
(iii) On the graph draw a suitable straight line.
(iv) Describe the relationship between the temperature of the gas and its pressure. [2]
(b) The apparatus from the experiment is placed in the school freezer. The pressure gauge reads $90 \mathrm{kN} / \mathrm{m}^{2}$. Estimate the inside temperature of the freezer and show on your graph how you arrived at your answer.

Temperature $=$
(c) The inside surface area of the rigid vessel used in the experiment is $5.3 \times 10^{-4} \mathrm{~m}^{2}$.

The company who make the apparatus state that the maximum force the vessel can withstand without breaking is 100 N .

Use the equation:

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

to calculate the maximum pressure the vessel can safely withstand.

SECTION B

Read the article in the resource booklet carefully and answer all the questions that follow.
7. (a) Refer to Diagram 1 to answer questions (i) to (iii).
(i) State how the diagram shows the Universe has changed over time.
(ii) Our Milky Way galaxy is labelled C. Compare how the distances of galaxies A and D from the Milky Way have changed from the early Universe to a later time.
\qquad
\qquad
\qquad
(iii) Arrange galaxies $\mathrm{A}, \mathrm{B}, \mathrm{D}$ and E , in order of speed of travel away from C from fastest to slowest.

Fastest \qquad
\qquad
\qquad Slowest
(iv) State which of the spectra in Diagram 2 is emitted from galaxy E .
\qquad
(b) Galaxy M87 shown below is classified as an elliptical galaxy class E sub-type $\mathbf{0}$.

Examiner

Use the information in Diagram 3 and Table 1 to identify the class and sub-type of the

TURN OVER FOR THE REST OF THE QUESTION.

(c) (i) Use the data in Table 2 to plot the points on the grid below and use your judgement

Recession speed (km/s)

Distance (Mpc)
(ii) Use your graph to find a value of the Hubble constant.
\qquad km/s/Mpc
(iii) Explain why another person may arrive at a different value of the Hubble constant from the same plotted points.
\qquad
\qquad

